Electrochemical Detection of Insulin in Blood serum using Ppy/GF Nanocomposite Modified Pencil Graphite Electrode
Authors
Abstract:
In this study, pencil graphite electrode was modified using conductive polypyrrole (Ppy) and grapheme (GF) nanocomposite for electrochemical determination of insulin. Electrochemical behavior of insulin on PGE was investigated using cyclic voltammetric (CV) and differential pulse voltammetric (DPV) and chronoaprometry (CA) methods. Several effective parameters including pH, concentration, and scan rate for electrochemical modification of electrode were investigated and optimal conditions were proposed. Kinetics of the oxidation reaction and diffusion coefficient of the sensor was studied. The performed steps allow the measurement of insulin with a linear repeatability curve and appropriate accuracy at a range of 0.225 to 1.235 μM. The limit of detection was obtained at 8.65 nM for insulin. The amount of electron transfer coefficient between modified electrode and insulin was obtained to 0.5 with 0.84~1 number of electrons exchanged during oxidation of insulin. The application of proposed sensor for analyzing insulin in a human blood serum was investigated.
similar resources
Electrochemical Behavior of 2-Aminothiazole at Poly Glycine Modified Pencil Graphite Electrode
Electro analysis of 2-Aminothiazole (2-AT) by a low cost poly Glycine modified Pencil Graphite Electrode (poly Gly/PGE) was studied using of cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. The optimal experimental conditions to determine 2-AT was setup by the variation of the current with scan rate, concentration and pH. Electrochemical performance of the 2-AT at ...
full textElectrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid
A molecularly imprinted polymer (MIP) polypyrrole (PPy)-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid) during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE) in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP) fi...
full textIn-situ preconcentration, and electrochemical sensing of zinc(II) and copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology
A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane was divided into pieces of 2 c...
full textIn-situ preconcentration, and electrochemical sensing of Zinc(II) and Copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology
A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane divided into pieces of 2 cm, t...
full textGold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine.
A novel gold nanoparticle-modified graphite pencil electrode (AuNP-GPE) is prepared just by immersing a bare GPE in AuNP solution, followed by heating for 15 min. The bare and modified GPEs are characterized by FE-SEM imaging and cyclic voltammetry. The AuNP-GPEs showed excellent electrocatalytic activities with respect to hydrazine oxidation, with good reproducibility. To reduce the quantifica...
full textElectrochemical Characterization and Determination of Tramadol drug using Graphite Pencil Electrode
Electrochemical oxidation of tramadol at pencil graphite electrode has been investigated using cyclic, differential pulse and square wave voltammetric techniques. In pH 9.2 phosphate buffer, tramadol showed an irreversible oxidation peak at 0.77 V. The dependence of the current on pH, concentration and scan rate was investigated to optimize the experimental conditions for the determination of t...
full textMy Resources
Journal title
volume 3 issue 4
pages 219- 228
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023